Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptional and Epigenetic Regulation by the Mechanistic Target of Rapamycin Complex 1 Pathway.

Identifieur interne : 000436 ( Main/Exploration ); précédent : 000435; suivant : 000437

Transcriptional and Epigenetic Regulation by the Mechanistic Target of Rapamycin Complex 1 Pathway.

Auteurs : R Nicholas Laribee [États-Unis]

Source :

RBID : pubmed:30359581

Descripteurs français

English descriptors

Abstract

Nutrient availability impacts health such that nutrient excess states can dysregulate epigenetic and transcriptional pathways to cause many diseases. Increasing evidence implicates aberrant regulation of nutrient signaling cascades as one means of communicating nutrient information to the epigenetic and transcriptional regulatory machinery. One such signaling cascade, the mechanistic target of rapamycin complex 1 (mTORC1), is conserved from yeast to man, and it is deregulated in diverse disease states. The catalytic subunit of the mTORC1 kinase complex (Tor1 or Tor2 in budding yeast and mTor in mammals) phosphorylates several downstream effectors regulating transcriptional and translational responses controlling growth and proliferation. Delineating mechanisms of cytoplasmic nutrient mTORC1 activation continues to be a major research focus. However, Tor kinases not only localize to the cytoplasm but also are found in the nucleus where they selectively bind and regulate genes controlling cellular metabolism and anabolism. The nuclear mTORC1 functions are now beginning to be defined, and they suggest that mTORC1 has a critical role in regulating the complex transcriptional activities required for ribosomal biogenesis. The mTORC1 pathway also interacts with epigenetic regulators required for modifying chromatin structure and function to control gene expression. Because altered nutrient states exert both individual and transgenerational phenotypic changes, mTORC1 signaling to chromatin effectors may have a significant role in mediating the effects of diet and nutrients on the epigenome. This article will discuss the recent inroads into the function of nuclear mTORC1 and its role in epigenetic and transcriptional regulation.

DOI: 10.1016/j.jmb.2018.10.008
PubMed: 30359581
PubMed Central: PMC6289701


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptional and Epigenetic Regulation by the Mechanistic Target of Rapamycin Complex 1 Pathway.</title>
<author>
<name sortKey="Laribee, R Nicholas" sort="Laribee, R Nicholas" uniqKey="Laribee R" first="R Nicholas" last="Laribee">R Nicholas Laribee</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center, 19 South Manassas, Cancer Research Building Rm 318, Memphis, TN 38163, USA. Electronic address: rlaribee@uthsc.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center, 19 South Manassas, Cancer Research Building Rm 318, Memphis, TN 38163</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30359581</idno>
<idno type="pmid">30359581</idno>
<idno type="doi">10.1016/j.jmb.2018.10.008</idno>
<idno type="pmc">PMC6289701</idno>
<idno type="wicri:Area/Main/Corpus">000419</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000419</idno>
<idno type="wicri:Area/Main/Curation">000419</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000419</idno>
<idno type="wicri:Area/Main/Exploration">000419</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptional and Epigenetic Regulation by the Mechanistic Target of Rapamycin Complex 1 Pathway.</title>
<author>
<name sortKey="Laribee, R Nicholas" sort="Laribee, R Nicholas" uniqKey="Laribee R" first="R Nicholas" last="Laribee">R Nicholas Laribee</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center, 19 South Manassas, Cancer Research Building Rm 318, Memphis, TN 38163, USA. Electronic address: rlaribee@uthsc.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center, 19 South Manassas, Cancer Research Building Rm 318, Memphis, TN 38163</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of molecular biology</title>
<idno type="eISSN">1089-8638</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Epigenesis, Genetic (MeSH)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Gene Expression Regulation (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Mammals (genetics)</term>
<term>Mammals (metabolism)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (metabolism)</term>
<term>Nutrients (metabolism)</term>
<term>Phosphorylation (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>Transcriptional Activation (MeSH)</term>
<term>Yeasts (genetics)</term>
<term>Yeasts (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activation de la transcription (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Levures (génétique)</term>
<term>Levures (métabolisme)</term>
<term>Mammifères (génétique)</term>
<term>Mammifères (métabolisme)</term>
<term>Nutriments (métabolisme)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protéines fongiques (génétique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Régulation de l'expression des gènes (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
<term>Épigenèse génétique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fungal Proteins</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mammals</term>
<term>Yeasts</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Levures</term>
<term>Mammifères</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mammals</term>
<term>Nutrients</term>
<term>Yeasts</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Levures</term>
<term>Mammifères</term>
<term>Nutriments</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Epigenesis, Genetic</term>
<term>Gene Expression Regulation</term>
<term>Humans</term>
<term>Phosphorylation</term>
<term>Signal Transduction</term>
<term>Transcriptional Activation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Activation de la transcription</term>
<term>Animaux</term>
<term>Humains</term>
<term>Phosphorylation</term>
<term>Régulation de l'expression des gènes</term>
<term>Transduction du signal</term>
<term>Épigenèse génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nutrient availability impacts health such that nutrient excess states can dysregulate epigenetic and transcriptional pathways to cause many diseases. Increasing evidence implicates aberrant regulation of nutrient signaling cascades as one means of communicating nutrient information to the epigenetic and transcriptional regulatory machinery. One such signaling cascade, the mechanistic target of rapamycin complex 1 (mTORC1), is conserved from yeast to man, and it is deregulated in diverse disease states. The catalytic subunit of the mTORC1 kinase complex (Tor1 or Tor2 in budding yeast and mTor in mammals) phosphorylates several downstream effectors regulating transcriptional and translational responses controlling growth and proliferation. Delineating mechanisms of cytoplasmic nutrient mTORC1 activation continues to be a major research focus. However, Tor kinases not only localize to the cytoplasm but also are found in the nucleus where they selectively bind and regulate genes controlling cellular metabolism and anabolism. The nuclear mTORC1 functions are now beginning to be defined, and they suggest that mTORC1 has a critical role in regulating the complex transcriptional activities required for ribosomal biogenesis. The mTORC1 pathway also interacts with epigenetic regulators required for modifying chromatin structure and function to control gene expression. Because altered nutrient states exert both individual and transgenerational phenotypic changes, mTORC1 signaling to chromatin effectors may have a significant role in mediating the effects of diet and nutrients on the epigenome. This article will discuss the recent inroads into the function of nuclear mTORC1 and its role in epigenetic and transcriptional regulation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30359581</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>09</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1089-8638</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>430</Volume>
<Issue>24</Issue>
<PubDate>
<Year>2018</Year>
<Month>12</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Journal of molecular biology</Title>
<ISOAbbreviation>J Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptional and Epigenetic Regulation by the Mechanistic Target of Rapamycin Complex 1 Pathway.</ArticleTitle>
<Pagination>
<MedlinePgn>4874-4890</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0022-2836(18)30970-7</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jmb.2018.10.008</ELocationID>
<Abstract>
<AbstractText>Nutrient availability impacts health such that nutrient excess states can dysregulate epigenetic and transcriptional pathways to cause many diseases. Increasing evidence implicates aberrant regulation of nutrient signaling cascades as one means of communicating nutrient information to the epigenetic and transcriptional regulatory machinery. One such signaling cascade, the mechanistic target of rapamycin complex 1 (mTORC1), is conserved from yeast to man, and it is deregulated in diverse disease states. The catalytic subunit of the mTORC1 kinase complex (Tor1 or Tor2 in budding yeast and mTor in mammals) phosphorylates several downstream effectors regulating transcriptional and translational responses controlling growth and proliferation. Delineating mechanisms of cytoplasmic nutrient mTORC1 activation continues to be a major research focus. However, Tor kinases not only localize to the cytoplasm but also are found in the nucleus where they selectively bind and regulate genes controlling cellular metabolism and anabolism. The nuclear mTORC1 functions are now beginning to be defined, and they suggest that mTORC1 has a critical role in regulating the complex transcriptional activities required for ribosomal biogenesis. The mTORC1 pathway also interacts with epigenetic regulators required for modifying chromatin structure and function to control gene expression. Because altered nutrient states exert both individual and transgenerational phenotypic changes, mTORC1 signaling to chromatin effectors may have a significant role in mediating the effects of diet and nutrients on the epigenome. This article will discuss the recent inroads into the function of nuclear mTORC1 and its role in epigenetic and transcriptional regulation.</AbstractText>
<CopyrightInformation>Copyright © 2018 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Laribee</LastName>
<ForeName>R Nicholas</ForeName>
<Initials>RN</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center, 19 South Manassas, Cancer Research Building Rm 318, Memphis, TN 38163, USA. Electronic address: rlaribee@uthsc.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM107040</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>10</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Mol Biol</MedlineTA>
<NlmUniqueID>2985088R</NlmUniqueID>
<ISSNLinking>0022-2836</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044127" MajorTopicYN="Y">Epigenesis, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="N">Gene Expression Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008322" MajorTopicYN="N">Mammals</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000078622" MajorTopicYN="N">Nutrients</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015533" MajorTopicYN="Y">Transcriptional Activation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015003" MajorTopicYN="N">Yeasts</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>08</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>10</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>10</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>10</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>9</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>10</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30359581</ArticleId>
<ArticleId IdType="pii">S0022-2836(18)30970-7</ArticleId>
<ArticleId IdType="doi">10.1016/j.jmb.2018.10.008</ArticleId>
<ArticleId IdType="pmc">PMC6289701</ArticleId>
<ArticleId IdType="mid">NIHMS1510580</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Cell. 2017 Sep 1;28(18):2449-2459</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28701348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1997 Sep 18;389(6648):251-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9305837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17829-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19822756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2004 Mar;11(3):295-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12707-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16908835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Discov. 2016 Mar 08;2:15049</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27462445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epigenetics Chromatin. 2013 Sep 02;6(1):29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24044743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2013 Nov;195(3):643-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24190922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 May 1;20(9):1075-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16618798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2012 Dec;37(12):553-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23153957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Jun 30;369(6483):756-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8008069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Aug 31;442(7106):1058-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16900101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2017 Dec;18(12):2197-2218</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29079657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2008 Aug;10(8):935-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18604198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Sep 20;489(7416):452-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22914091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 Apr 17;11(4):e1005148</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25885886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Feb 15;18(4):423-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15004009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Nov 18;310(5751):1152-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16254148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2017 Sep;74(18):3317-3334</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28386724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Mar 3;21(5):629-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16507361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Mar;11(3):1718-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1996117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Jan 13;270(2):815-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7822316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2009 Apr 8;28(7):854-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19214185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Mar 21;45(11):3635-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16533046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2006 Oct 16;25(48):6384-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2008 Jul;15(7):738-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18568037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Mar 13;10(3):e0120250</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25767889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Nov 28;103(48):18107-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Apr 27;26(2):217-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17466624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2017 Jun 13;19(11):2371-2382</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28614721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2153-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19164765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2018 Jan 16;22(3):611-623</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29346761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):9674-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26195783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2014 Jan;13(1):73-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24113281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2008 May 1;22(9):1190-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18451108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Aug 24;47(4):535-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22795129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Apr 16;12(8):632-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11967149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Jul;10(1):151-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 Mar 27;11(3):e1005113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25815716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Sep 11;35(5):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>NPJ Aging Mech Dis. 2016 Aug 18;2:16017</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28721271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2010 Mar 26;37(6):809-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20347423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Nov 29;450(7170):736-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18046414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2012 Jun;28(6):285-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22465610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2007 Jan 1;6(1):11-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17245116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pathol. 2010;5:253-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20078221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2004 Feb;15(2):946-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14595104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Aug 1;20(15):2030-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16882981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2017 Jun 22;13(6):e1006771</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28640831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Oct 15;21(20):5498-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12374750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Jun 6;153(6):1194-217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23746838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2003 Aug 5;13(15):1259-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12906785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Jan;23(2):629-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12509460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2018 Jan;18(1):51-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29192214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Jun 7;546(7657):234-242</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28593971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 Mar-Apr;1819(3-4):332-342</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24459735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Enzymes. 2010;28:167-187</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25814783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2013 Aug;41(4):887-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23863150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 Dec 4;159(6):1377-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25480300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Mol Med. 2013 Nov;19(11):643-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23953479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2017 Jul;18(7):407-422</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28512350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Aug 14;10(8):e1004505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25121932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2009 Aug 5;28(15):2220-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19574957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Dec;23(23):8862-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14612424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2011 Dec 1;489(1):55-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21924331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 May 22;109(21):8161-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22570494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(2):848-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24157840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2013 Apr 2;17(4):586-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23562079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2009 May;182(1):105-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19270272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Jan 24;26(2):448-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17203076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1999 Nov;24(11):437-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10542411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 Jul 15;78(1):35-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7518356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2010 Aug 4;29(15):2515-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20581803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Aug;1839(8):627-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24631868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2015 Dec 17;6(2):463-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26681516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Mar;9(3):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11931764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Mar;39(4):1336-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20947565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2017 Jun 15;31(12):1228-1242</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28724614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Nov;38(21):7388-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20663773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2007 Feb;14(2):123-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17259992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2013 May;13(5):299-314</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23612459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Mar 9;168(6):960-976</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28283069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Feb 5;327(5966):693-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2009;78:273-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19355820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2013 Nov 7;52(3):303-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24207024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Aug 1;17(15):1829-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12869586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 May 2;278(18):15461-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12604610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2017 Feb 15;36(4):397-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28096180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell. 2012 Jul 10;22(1):51-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22789538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2017 Jun 27;15(6):e2001333</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28654659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epigenetics Chromatin. 2016 Aug 17;9:34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27540414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2015 Jul;35(13):2321-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25918242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Aug;40(14):6534-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22553361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2016 Feb 9;14(5):1010-1017</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26832415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Nov 4;334(6056):678-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22053050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2002 Sep;4(9):648-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12172553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 May;26(9):3672-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16612005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Mar 1;17(5):654-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12629047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Sep;38(16):5315-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20421203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2016 Aug 18;12(9):662-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27538025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pharmacol Toxicol. 2010;50:131-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20055700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Dec 30;47(52):13991-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19102706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2016 Aug;203(4):1733-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27343235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):E3424-E3433</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28400511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Nov 17;22(22):6045-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14609951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(2):e56793</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23437238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Nov 11;6(11):e277</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18998772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2011 Jul 05;30(15):3052-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21730963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2018 Sep;561(7721):45-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30185958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2004 Dec 22;16(6):943-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15610737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2018 Feb 20;14(2):e1007216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29462149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Apr;7(4):e1001376</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21533076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Feb 28;45(4):1776-1792</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27903908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2001 Apr;7(4):741-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11336698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Aug 2;277(31):28127-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12000755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1496-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18497260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 May 7;285(19):14152-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20299458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2010 Mar 1;9(5):953-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20038818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2015 Mar;16(3):167-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25693130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2018 Jun 20;87:27-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29925263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jul 13;43(12):5759-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25979266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2016 Nov 30;81(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27903656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2013;47:483-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24050178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11823-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20543138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2018 Sep;19(9):563-578</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29930302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2011 Feb 15;71(4):1418-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21159662</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Tennessee</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Tennessee">
<name sortKey="Laribee, R Nicholas" sort="Laribee, R Nicholas" uniqKey="Laribee R" first="R Nicholas" last="Laribee">R Nicholas Laribee</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000436 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000436 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30359581
   |texte=   Transcriptional and Epigenetic Regulation by the Mechanistic Target of Rapamycin Complex 1 Pathway.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30359581" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020